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Introduction

Inhomogeneous t'mite elements am an attractive alternative to homogeneous elements in

the mechanical analysis of fabric reinforced composites (Figure 1). These elements greatly

simplify the mesh generation problem created by the complex reinforcing geometry.

However, this advantage has some drawbacks associated with it. Convergence, with

diminishing element size, becomes less certain. Also, the computation of stresses within the

various constituent materials of an element becomes a problem. This paper addresses both

these concerns.

The convergence can be improved by replacing the inhomogeneous elements with

special homogeneous elements whose properties are chosen to match the inhomogeneous

element response to simple average strain states. One and two dimensional examples are

considered. The three dimensional application is discussed without examples. The analysis

also provides the basis for an approximate solution for the average stresses within each

constituent material of each inhomogeneous element. This makes an approximate

stress/failure analysis possible.
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The Analysis

The analysis uses the unit cell concept to create a boundary value problem that fully

characterizes the reinforcing microgeometry. Division into subcells then establishes a finite

element mode/of the unit cell and reduces the reinforcing complexity in each subcell to the

point where average, subcell, constituent stress levels are meaningful. For example,

consider the plain weave unit cell in Figure 2. Subcells that were adequate for stiffness

analysis must be reduced in size to yield meaningful detailed stress information.

The individual subcell stiffness matrix, [k], can be obtained by numerical integration

of the general f'mite element energy formula [k] = fff BrDB dvol where the matrix D

contains only material property distribution functions and the matrix B contains only

displacement mode shape derivatives (Ref. 1). Once a library of different subcell stiffness

matrices has been created it remains to transform them into the global coordinates and

assemble them into an overall stiffness matrix for the unit cell. The surface nodal forces

and the average strains in each subcell, corresponding to each of the six independent strain

states of 3-D elasticity, may then be solved. The surface nodal forces give the average

stresses on the unit cell surfaces.The stiffness coefficients of the composite may then be

computed. The convergence of this process is considered In:st. The subsequent

computation of the constituent stresses is taken up later.
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One Dimensional Example

The tension bar made from dissimilar materials (Figure 3) illustrates the convergence

problems associated with inhomogenous elements and simple displacement mode shapes. If

a t'mite element node coincides with the point of material discontinuity then the elements

become homogeneous, the strain in each element becomes uniform, and the analysis

converges abruptly to the true displacements. But, if the material discontinuity is always

contained within some element, as in Figure 3:, then the solution is approximate and the

accuracy and convergence rate depend on the choice of assumed dispIacement mode

shapes. For example, consider a linearly varying displacement mode shape within each

element and an internal node placement at the 1/3 and 2/3 points along the bar. Each

subsequent refinement divides each element into three equal segments. The middle element

remains inhomogeneous as element size decreases. Figure 3 is a plot of bar elongation

error as the element size diminishes. The load point displacement approaches the exact

solution monotonically. Although rapid, this convergence is less satisfactory than that of

the homogeneous element solution.
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FIGURE 3. TENSION BAR PROBLEM
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Improved Convergence

The convergence rate for the previous problem can be improved by using higher

order displacement mode shapes (Ref. 2). It can also be improved by making a

modification that overrides the source of error. The error source is the inability of the

energy formulation, in combination with the linear displacement assumption, to distinguish

between dissimilar material stiffnesses in series and parallel (Figure 4). The use of low order

displacement modes is a presumption of parallel response when in reality the stiffnesses

are functioning in series, in this particular application at least. The use of higher order

modes would permit the analysis to make such a distinction. The same refinement can be

attained by intervention of the analyst. Since the two materials in the center element are

truly arranged in series, an effective modulus, E, of this element can be computed from the

elementary series formulation 2 = 1+ i where subscripts L, R designate left and right
E Et. ER

halves of the bar. The inhomogeneous center element can then be replaced by a

homogeneous one with the modulus E. This correction leads to the immediate convergence

of the deflection analysis. The logic in this argument seems trivial but as the dimension

increases to two and three it becomes more complicated.
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FIGURE 4. ELEMENTS IN SERIES AND PARALLEL
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2-D Example

Figure 5 contains an example of a bimetallic composite in the form of bonded sheets

of dissimilar materials. In the natural coordinates of the material the composite stiffnesses

and internal stresses can be established from elementary mechanics. The results can be

transformed into any other coordinates. In the coordinate system of Figure 5A the material

can also be analyzed using inhomogeneous finite elements. A unit cell and a subcell

division are shown in Figure 5B. Using the displacement modes usually associated with 8

node-isoparametric-brick elements ( Ref. 1), generalized plane strain analysis, and the 32

node f'mite elements grid shown; the analysis overestimates the x and y moduli by over

20%. Refinement of the t'mite element grid leads to the composite moduli estimates of

Figure 5C.

The convergence may be improved by recognizing how the reinforcing layers provide

stiffness and then applying the appropriate rule of mixtures formulae while substituting

homogeneous orthotropic elements in place of the inhomogeneous ones. Stiffnesses in

parallel apply in the two principal reinforcing directions. Stiffnesses in series apply normal

to the material boundaries. Figure 5C shows that this leads to abrupt convergence of the

Finite element sequence. The Appendix contains the relevant equations for this analysis.
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2-D Generalization

Consider generalizing the 2-D case to include more than two materials while

restricting the material distribution within the subcell. Assume the material boundaries can

be represented by a number of straight lines radiating from a common point within the

subcell (Figure 6A). If additional lines are drawn from that point to each subcell comer

node then each material will be contained in one or more homogeneous triangular f'mite

elements. Comer displacements of the rectangular subcell are f'Lxed by the applied strain

case. Edge conditions must be approximated. The stresses within each material of the

subcell can now be computed corresponding to each independent unit strain case. The

nodal forces along the sides of the subcell are also available for calculating the mean

stress/strain relations for the subcell. The subcell can then be considered homogeneous and

anisotropic in the unit cell analysis.

If the common point lies outside the subcell boundaries then a similar analysis can

be performed using some trapezoidal elements (Figure 6B). In either case full displacement

continuity is not preserved between adjacent rectangular subcells.
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Edge Boundary Conditions

The aforementioned boundary conditions on nodes created by the intersection of

material boundaries and subcell edges are key points (Figure 7A). The assumptions

used here are motivated by consideration of the special case where a material boundary

and subcell edge cross at right angles (Figure 7B) and the surrounding material/loading

arrangement is symmetric across the same subcell edge. Then the response will be

syrmnetric. This implies zero tangential displacement along the material boundary

(except for rigid motion) and zero nodal force normal to the material boundary.

The unit shear strain case (Figure 7C), relative to the same axes, represents

antisymmetric loading with zero displacement normal to the material boundary (except for

rigid motion) and zero nodal force component parallel to the material boundary.

For material boundaries which intersect subcell edges at angles other than 90 ° the

true boundary conditions cannot be rationalized so easily. Nevertheless, it is assumed that

the same displacement and force conditions remain as suitable approximations to the true

conditions of equilibrium and compatibility across adjacent subcell boundaries.
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177



3-D Analysis
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To extend the analysis into three dimensions it is assumed that within any subcell of

the rectangular 3-D array of subcells representing the unit cell, the dissimilar material

boundaries consist of planes which intersect at a single Straight line within the subcell

(Figure 8). ,Call this line the "common material axis". Consider the smallest sphere

containing the subcell. A major circumference of the sphere exists which defines a plane

which is normal to the common material axis and passes through the subceU centriod. By

assuming the stresses do not vary along the common material axis the analysis reduces to a

series of 2-D problems in the circumferential plane. Each 2-D problem resolves the

displacements as a result of an applied unit strain with reference to the circumferential

plane. The stresses within each wedge of dissimilar material may then be solved and the

average stresses over any planar area within the subcell computed. These average stresses

over the subcell surfaceSpe_t the:calculation of the equivalent anisotropic constants of

the subceil. The boundary conditions at node points formed by the intersection of

dissimilar material planes and subcell boundaries are established in the same way as in the

2-D case. Thus, inhomogeneous subcells are replaced by homogeneous ones in the unit cell

analysis.
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Global-Local Analysis

It is likely that critical regions of high stress within a unit cell can be identified

beforehand, making a complete stress analysis unnecessary. Certain subcells or portions of

subcells will be of interest and can be isolated for detailed study through global-local

analysis. This reduces the computational effort. For example, a crude model of a unit cell,

based on a few subcells, can be used to obtain composite stiffnesses and defme the

displacements on the boundaries of a smaller volume of microstructure that contains a

single subcell of further interest. A more refined grid may then be superposed on the

smaller volume and more detailed stresses or displacements obtained for either a failure

analysis or a more ret'med analysis of some smaller portion of that volume (Figure 9). Such

a sequence of grid ref'mement may be expected to yield detailed Finite element average

stresses and strains in regions of tow bypass, tow contract, and sharp tow curvature. The

problem of resolving these average element strains into average constituent strains and

stresses will be considered next.

FIGURE 9.

UNIT

CELL

MODEL

"2_.-

FIRST

LOCAL SECOND

ANALYSIS LOCAL
, ANALYSIS

)

J -- AREA OF INTEREST FOR

STRESS ANALYSIS

TYPICAL SEQUF_aNCE OF INCREASING ANALYSIS DETAIL

179



Constituent Stresses
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Returning to the one dimensional example, the determination of the stresses in the

truly homogeneous elements of the tension bar is the same as in any finite element analysis.

The strain is first computed from the displacements of the element nodes. The

homogeneous, uniaxial stress/strain law of the material then leads to a stress calculation.

For an inhomogeneous element the average strains are computed in the same way.

Recourse to the stiffness in the series model that was usedto compute the equivalent stiffness,

E, also provides the basis for the constituent material stress calculation. The equations of

strain compatibility and stress equilibrium plus the individual constituent material

stress/strain relations are adequate in number for the stress calculations (Ref. 2).

In the general 2-D and 3-D cases the same mini-f'mite-element models that form a

basis for equivalent stiffness calculations also provide a mechanism for backing out the

constituent stresses (Figure 10). First, the element comer displacements, in conjunction

with the displacement mode shapes establish internal displacements. Derivatives of the

mode shapes establish detailed strains. The volume averages of these detailed strains

establish the subcell average strains. Each average strain component, along with the mini-

f'mite element model yields average strains in each constituent material. Constituent

stress/strain laws then yield average stresses at the constituent material level.
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Concluding Remarks

There is a need to do routine stress/failure analysis of fabric reinforced composite

microstructures to provide additional confidence in critical applications and guide materials

development. Conventional methods of 3-D stress analysis are time consuming to set up

run and interpret. A need exists for simpler methods of modeling these structures and

analyzing the models. The principal difficulty is the discrete element mesh generation

problem. Inhomogeneous f'mite elements are worth investigating for application to these

problems because they eliminate the mesh generation problem. However, there are

penalties associated with these elements. Their convergence rates can be slow compared to

homogeneous elements. Also, there is no accepted method for obtaining detailed stresses

in the constituent materials of each element. This paper shows that the convergence rate

can be significantly improved by a simple device which substitutes homogeneous elements

for the inhomogeneous ones. The device is shown to work well in simple one and two

dimensional problems. However, demonstration of the application to more complex two

and three dimensional problems remains to be done. Work is also progressing toward more

realistic fabric microstructural geometries.

FABRIC MICROSTRUCTURAL ANALYSIS NEEDED

CONVENTIONAL (HOMOGENEOUS) FINITE ELEMENTS DIFFICULT TO APPLY

TO FABRIC

SIMPLER METHODS/MODELS NEEDED

INHOMOGENEOUS ELEMENTS ATTRACFIVE ALTERNATIVE

SLOW CONVERGENCE PROBLEM CAN BE REMEDIED

CONSTITUENT MATERIAL STRESSES OBTAINABLE

ANALYSIS NOT PROVEN YET

WORK REMAINS TO BE DONE

FIGURE 11. CONCLUSIONS
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Appendix

The rectangular inhomogeneous element of Figure 12 consists of two homogeneous isotropic

materials (A and B). Parallel to the material boundary plane (y = o) the average Young's moduli (E x, Er.)

and Poisson's Ratios ( "o_, a)_7)can be approximated by the parallel Rule of Mixtures:

E_ = E_ = E A v A + Es vB ,x)_ = x)_="OAV A +'0 BVB

where v designatesmaterial volume fractionand subscriptsA, B designatethe material.The shear

modulus (G-_ can be approximated by the same rule

G_.- GAV A + GBV B

Normal to the material boundary plane the average Young's modulus (E_y) and shear modulus

(G_) are given by the series Rule of Mixtures:

1 = v A + v B , 1 = vA + vB

Ey E A Ell G_ G A G B

Considering y = o to be a plane of isotropy, the Poisson's Ratio (a)_ or a)n) in that plane can be

approximated by (Ref. 3):

F_.z

_)--= _)_ = --
xz 71 EA _^ "0''^)_ EE_A(1-,) EA'_. ] t _v_

These equations are sufficient to support the construction of a homogeneous f'mite element

stiffness matrix after the moduli are transformed into the global x,y,z coordinates.
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Figure 12: 2-D Analysis for Two Materials
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